

Fig. 1. Electron density in $\operatorname{Ce}_{24}\operatorname{Co}_{11}$ on the mirror (x, 2x, z) plane. The outer contour is $0 \, \mathrm{e.A}^{-3}$. The contour interval at the Co atoms is $10 \, \mathrm{e.A}^{-3}$ and at the Ce atoms $20 \, \mathrm{e.A}^{-3}$.

Fig. 2. Projection of the structure of $Ce_{24}Co_{11}$ on a plane normal to the *b* axis.

Discussion of the structure

A projection of the structure normal to the *b* axis is shown in Fig. 2. The interatomic distances are listed in Table 2. The neighbors given are those which satisfy the definition of Frank & Kasper (1958). Some of the Ce-Co distances are exceptionally short. The smallest known Ce-Ce distance is 3.09 Å in CeCo₂. The radius of Co is about 1.25 Å so one might expect a minimum Ce-Co distance of about 2.80 Å. Distances as short as 2.61 Å are found in this compound. The standard deviations given in Table 2, aside from systematic errors, are overestimates because the fact that the atoms are in special positions has not been taken into account.

We are indebted to V. O. Struebing for the preparation and heat treatment of the alloy.

References

- BUERGER, M. J. (1951). Acta Cryst. 4, 531.
- BUERGER, M. J. (1960). Crystal Structure Analysis, p. 218. New York: Wiley.
- COFFINBERRY, A. (1960). Private communication.
- FORSYTH, J. B. & WELLS, M. (1959). Acta Cryst. 12, 412.
- FRANK, F. C. & KASPER, J. S. (1958). Acta Cryst. 11, 184.
- Roof, Jr., R. B., LARSON, A. C. & CROMER, D. T. (1961). Acta Cryst. 14, 1084.
- VOGEL, R. (1947). Z. Metallk. 38, 97.

Acta Cryst. (1962). 15, 1227

The Crystal Structure of Rhodanine, C₃H₃ONS₂*

By D. van der Helm,† Arthur E. Lessor, Jr.‡ and Lynne L. Merritt, Jr.

Department of Chemistry, Indiana University, Bloomington, Indiana, U.S.A.

(Received 5 May 1959 and in revised form 5 September 1961)

The structure of rhodanine has been determined by three-dimensional Fourier and least squares methods using an I.B.M. electronic computer. The crystals are monoclinic having the unit-cell dimensions $a_0 = 10.02$, $b_0 = 7.67$, $c_0 = 7.28$ Å; $\beta = 102^{\circ}$ 38'. There are four molecules per unit cell and the space group is $P2_1/n$. The molecule is planar. There are two strong N · · · O hydrogen bonds around the center of symmetry, binding the molecules in pairs.

Introduction

The crystal structure of rhodanine

$$CH_2 - S - C(=S) - NH - C(=O)$$

is one of several investigations being carried out in

this laboratory on chelate compounds and organic compounds forming chelates. An earlier communication with the unit cell dimensions has appeared (Merritt & Lessor, 1955). Rhodanine has been long used as an intermediate in the preparation of phenylalanine. The analytical properties were not discovered until Feigl (1926) reported the formation of the water-insoluble complex of rhodanine and silver ion. He also found that similar complexes were formed in acidic solution with univalent mercury and copper ions. In basic solution almost all metallic ions give precipitates containing rhodanine which decompose

^{*} Contribution No. 1077 from the Chemical Laboratories of Indiana University.

[†] Present address: Department of Chemistry of Oklahoma, Norman, Oklahoma.

[‡] Present address: The International Business Machines Corp., Kingston, New York.

more or less rapidly to the sulfides. The silver atom supposedly forms bonds with the nitrogen and the sulfur atom outside the ring (Feigl, 1949).

Experimental

Rhodanine was recrystallized from ethyl alcohol. When grown from this solvent the crystals are elongated, hexagonal plates. Oscillation photographs were taken about all three crystallographic axes and the unit cell dimensions were found to be

$$a_0 = 10.02 \pm 0.10, \ b_0 = 7.67 \pm 0.08, \ c_0 = 7.28 \pm 0.07 \text{ Å};$$

 $\beta = 102^\circ 38'.$

Cu Kx radiation was used ($\lambda = 1.542$ Å). The density was 1.549 g.cm.⁻³ (flotation) and a direct calculation of the number of molecules per unit cell yields 3.8 molecules, which may be rounded off to 4.0. The three principal indices of refraction were $n_{\beta} = 1.77$ (parallel to the *b*-axis of the crystal), $n_{\alpha} = 1.59$ (49° in obtuse β with the *a*-axis) and $n_{\nu} = 1.80$.

Systematic extinctions were observed for (h0l) when $h+l \neq 2n$ and for (0k0) when $k \neq 2n$. This determines the space group uniquely as $P2_1/n$. The multiple film technique was used to obtain X-ray intensity data. Intensities were estimated visually by comparison with a standard intensity strip. Three-dimensional data were used for the structure determination after being corrected in the usual way.

Determination of the structure

The most intense reflection was (211). The molecule was expected to be almost flat. A three-dimensional Patterson synthesis was computed to find the positions of the two sulfur atoms and possibly a reasonable trial structure. In order to get as much information as possible the amplitudes were modified to sharpen the Patterson peaks. After considering several modification functions (Patterson, 1935; Lipson & Cochran, 1955; Shoemaker, Barieau, Donohue & Lu, 1953), the function

$$(\sum_i Z_i^2/\sum_i f_i^2) \exp\left[(-4\pi^2/p) + 2B
ight] \sin^2 heta/\lambda^2$$

was found to be the most appropriate. The value of p was taken to be 7.25. The functions proposed by Shoemaker and co-workers need an accurate value of the temperature factor so as not to get disturbing series termination errors or, on the other hand, so as not to diminish the high reflections too quickly. At this stage only an inaccurate value for the temperature factor was available, which was used in the equation above.

In the Harker section $P(u, \frac{1}{2}, w)$ there were three high peaks. These are S-S peaks; one of them is a non-Harker peak. The sulfur atoms therefore must have about the same y parameters. This was proved by the Harker line $P(\frac{1}{2}, v, \frac{1}{2})$. This, together with the real Patterson peaks gave quite accurate parameters for the sulfur atoms.

To get reliable information about the positions of the other atoms, a Patterson superposition method in three dimensions using seven of the possible ten S-S peaks was carried out (Shoemaker et al., 1953; Donohue & Bryden, 1955). This gave unambiguously the positions of three other atoms. It also indicated two other probable positions which were reasonable as far as the form of the molecule is concerned. All the Patterson peaks of one of these latter atoms lay near S-S peaks and several of the Patterson peaks of the other atom were considerably distorted by the twofold axis. In the first three-dimensional Fourier synthesis these last two probable positions were left out. The R, $R = \Sigma (F_c - kF_o) / \Sigma kF_o$, of this first calculation was 0.35 and gave the positions of the two remaining atoms (which agreed well with the probable positions obtained from the superposition of the Patterson maps). New three-dimensional structure factors were calculated (R=0.23), using an overall isotropic temperature factor. A difference Fourier indicated only small shifts in parameters. The molecule thus found lay near the $(2\overline{1}1)$ plane.

Refinement of the structure

It was decided to refine the structure with leastsquares calculations on the parameters and the individual isotropic temperature factor of each atom. The parameter corrections were calculated from a diagonal matrix, except for cross-terms $\sum (\partial F / \partial x_i) (\partial F / \partial z_i)$. After four cycles of structure factor and least-square calculations the R was reduced to 0.17. The weighting factor in the least-squares calculation was taken as $1/F_o$, and for F_o 's lying between F_o minimum and $3F_o$ minimum, as $1/(3F_o \text{ min.})$. The function minimized was $\sum w(|F_o| - |F_c|)^2$. After the fourth time there were only a few small shifts. A three-dimensional difference Fourier gave indications of the positions of the three hydrogen atoms. These were included in all the following structure factor calculations, assigning them arbitrarily a value of B of 1.00 in the temperature

factor expression. The Fourier section at $(2\overline{1}1)$ showed

Fig. 1. Difference Fourier of the section (211). Contours at $0.5 \text{ e.}\text{\AA}^{-3}$. Dotted contours are negative. The maximum electron density at the centers of the sulfur atoms on the Fourier synthesis was 42 e.Å⁻³.

Fig. 2. Final Fourier electron density projection on (010). Contours at 2 e. $Å^{-2}$, except around the sulfur atoms where the contours are at 2, 4, 8, 12, 16, 20 and 24 e. $Å^{-2}$. Zero line is dotted.

that the two sulfur atoms and the oxygen atoms, especially, have strong anisotropic movements. The directions and lengths of the axes of the vibration ellipsoids for these three atoms were calculated from the difference Fourier (Cochran, 1951; Rollett & Davies, 1955; Davies & Blum, 1955; Leung, Marsh & Schomaker, 1957). New structure factors were calculated with anisotropic temperature factor parameters for the sulfur and oxygen atoms and isotropic temperature factor parameters for the remaining atoms. The next difference Fourier through the section (211) showed only a small improvement, although the R was reduced to 0.15. A least-squares calculation showed only small shifts. Newly calculated structure factors, optimalized as well as possible with respect to the anisotropic temperature parameters, gave the values for the final difference Fourier through the section $(2\overline{1}1)$, (Fig. 1). A few reflections with high intensities, which were obviously unreliable because of extinction, were left out of this calculation. Although a fair improvement could be seen, the anisotropy is

Table 1. Atomic coordinates

	x/a	y/b	z/c
S_1	0.410	0.043	0.173
S_2	0.248	0.036	0.473
C_1	0.366	0.129	0.358
$\overline{C_2}$	0.871	0.164	0.096
C_3	0.770	0.291	0.148
N ₁	0.412	0.283	0.440
O_1	0.909	0.030	0.184
H,	0.510	0.354	0.440
н,	0.817	0.339	0.289
H_3	0.676	0.258	0.192

still present. A final least-squares calculation did not give any significant shifts and further refinement was considered to be without any value, taking into account the other possible errors. The final R for all the observed reflections was 0.14. A projection on (010) is shown in Fig. 2. The final parameters are given in Table 1, the temperature factors in Table 2 and direction cosines of the axes of the vibration ellipsoids for the sulfur and the oxygen atoms are given in Table 3. The observed and calculated structure factors are presented in Table 4.

Table 2. Temperature-factor coefficients

	a	β	γ	δ	ε	η	B
\mathbf{S}_{1}	0.693	0.632	0.498	0.025	-0.260	0.485	
s,	0.578	0.483	0.533	-0.265	-0.073	0.523	
$\overline{O_1}$	0.818	0.580	0.578	-0.293	-0.413	0.790	
C_1							1.48
C_2							1.38
$\overline{C_3}$							$2 \cdot 13$
\tilde{N}_{1}							1.55
H ₁							1.00
H_2							1.00
H_3^-							1.00

Table 3. Axes of vibration ellipsoids

Atom	i	g_{i1}	g_{i2}	g_{i3}	B_i
S_1	1	-0.2921	0.3946	0.7889	1.41
-	2	0.5507	0.8021	-0.0782	2.75
	3	0.7769	-0.4271	0.6038	3.01
S_{2}	1	0.0000	0.7312	0.6648	1.88
-	2	0.6269	0.5415	-0.4109	1.33
	3	0.7769	-0.4271	0.6038	2.96
0,	1	-0.2921	0.3946	0.7889	1.24
1	2	0.5507	0.8021	-0.0782	$2 \cdot 13$
	3	0.7769	-0.4271	0.6038	4.17

Computations

All computations were made on an I.B.M. 650 electronic computer. All the programs used were written in this laboratory. A general program, without limitations as to the number of amplitudes was written for Patterson and Fourier summations. The speed is difficult to define. An actual example with 600 amplitudes took 20 hr. of machine time to compute 31,250 points in space. The structure factor, Fourier and least-squares programs used in this analysis are now superseded by faster programs.

The scattering factors for carbon, nitrogen and oxygen were the values of Berghuis *et al.* (1955). The scattering factors of sulfur were based on the values given by Tomiie & Stam (1958).

Description of the structure

All of the atoms lie very nearly in a plane. The leastsquares-best plane is given by the equation $2 \cdot 127x - 1 \cdot 302y + 1 \cdot 087z = 1$, and the average deviation of the atoms from this plane is 0.012 Å, the maximum
 Table 4. Table of structure factors of rhodanine

The star indicates an unobserved reflection. The listed value of F_o in that case is the minimal structure factor amplitude which is observable at the position of the reflection

h	ł	F	Fc	h ł	F, F	h l	F _o F _c	h l	F _o F _c	hι	F _o F _c	hι	F _o F _c	hι	F _o F _c	hł	F, F
24681012 11335	, k 000000 11-1-	0 = 0 247 212 828 269 49 176 165 318 403 177 145	-304 -209 -753 267 -31 167 254 399 -430 157 -129	$\begin{array}{c} 1 & -1 \\ 1 & -1 \\ 2 & -1 \\ 3 & -1 \\ 3 & -1 \\ 4 & -1 \\ 5 & -1 \\ 5 & -1 \\ 6 & -1 \\ 7 & -1 \\ 7 & -1 \\ 1 \end{array}$	494 60 248 35 37 -3 840 42 176 -16 799 -90 176 -16 182 19 255 27 126 -13 159 -14 354 -36	-66 32 3-66 -66	C C C 273 -312 33 -33 87 64 132 -131 261 289 49 39 143 -64 251 234 54 -54 58 -45 148 120 202 186 61 -68 151 -156 23* 22	3333333333 1122334 45566778	$\begin{array}{c} 62 \\ 215 \\ 228 \\ 178 \\ 162 \\ 178 \\ 162 \\ 178 \\ 162 \\ 178 \\ 162 \\ 178 \\ 162 \\ 178 \\ 162 \\ 178 \\ 162 \\ 178 \\ 161 \\ 178 \\ 101 \\ $	k 000000000000000000000000000000000000	158 -185 245 280 165 152 183 182 177 -161 355 -34 21* -34 70 -43 78 -78 176 -212		51 -28 54 -45 31 -18 46 41 171 -158 12± 27 202 -189 157 150 139 127 49 -35 26 -21 108 145 124 -150 68 66		172 214 154 -176 338 -400 37 -59 303 -59 303 -58 137 -158 137 -158 137 -258 134 128 75 -79 41 -258 134 128 75 -79 41 -253 118 127 194 216	4 4 5 5 6 6 7 7 8 8 9 9 10 1 1 -1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
5779911102244c	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -	145 65 174 60 102 63 19* 119 110 77 799 559 242	-125 -174 -58 -97 -64 -99 1152 -838 -838 -838 -538 -538 -538 -538 -538	8 -1 9 1 9 -1 10 1 10 -1 11 1 11 -1 12 -1 12 -1 0 2 1 2 1 -2 2	43 -44 26* 3 87 10 151 14 266 28 18* 2 115 -99 -9 108 -12 244 27 33 1 132 15	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	64 58 94 -104 104 102 45 -42 195 193 90 -88 98 -107 104 -85 94 86 247 -226 61 -26 124 82	8 -3 9 -3 10 -3 10 -3 11 -3 12 -3 1 -4 1 -4 2 -4	188 215 69 -63 206 217 121 111 22* 29 107 -113 185 194 58 -56 28 14 442 -473 62 -40 142 118	1 -1 1 -1 2 -1 3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	214 $22615*$ -8411 $45815*$ 8318 $-352250 - 26120*$ $-3319*$ -33148 129171 15754 6175 -9954 -28	2334455667890 10-66666666666666666666666666666666666	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	99011 011223344	15# 3 45 30 55 39 44 -33 138 157 184 -244 184 6 279 -323 158 154 197 193 266 301 95 -105	$\begin{array}{c} 0 & 2 \\ 1 & -2 \\ 2 & 2 \\ 2 & -2 \\ 3 & -2 \\ 4 & -2 \\ 5 & -2 \\ 4 & -2 \\ 5 & -2 \\ 6 & -2 \\ 6 & -2 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
688 10 12 1 3355	-22222222222222222222222222222222222222	79 25* 180 202 45 5/ 321 143 88 327 24	-110 -81 -18 476 -140 -220 41 -68 321 131 -93 -318	2 -	35 -2 247 -21 136 12 113 6 21* -12 23* -12 87 -6 45 -2 43 -2 65 -2 43 -2 64 -2	3 - 7 3 - 7 7 - 7 7 - 8 - 7 9 - 7 9 - 7 9 - 7 10 - 7 10 - 7 10 - 8 1 - 8 1 - 8 1 - 8 1 - 8 1 - 8 2 - 8 3 - 8 3 - 8 3 - 8 2 - 8 3 -	$\begin{array}{cccccccccccccccccccccccccccccccccccc$,34455667788990	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8 -1 9 -1 9 -1 10 -1 11 -1 12 -1 0 2 1 -2 1 -2	271 - 14 55 52 252 212 140 147 18 20 257 229 38 - 35 55 - 47 82 - 90 117 - 128 44 - 74 63 - 79	0 777777777777777777777777777777777777	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	556767889011 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 - 2 7 - 2 8 - 2 9 - 2 10 - 2 11 - 2 0 3 1 - 3 1 - 3 2 3	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
779911 02244668	33333 2344444	60 269 24 71 112 145 486 218 24 * 700 88 118 255	-37 -257 -23 -35 97 -100 -501 189 -9 810 -78 -110 208	9 -2 9 -2 10 -2 11 -2 12 -2 0 3 1 3 1 -3 2 -3 3 -3 3 -3	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	33 5 -8 94 6 -8 99 8 -8 914 0 9 926 1 -9 926 3 -9 926 5 -9 925 5 -9 925 5 0	169 - 143 54 - 34 15* -5 103 - 98 15* -28 15* -28 15* -3 50 -40 126 - 115 13* - 1 < = 2 516 - 586	10 444 112 01 12 255555555555555555555555555555	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 -2 2 -2 3 -2 4 -2 5 -2 6 -2 7 -2 7 -2 8 -2 8 -2 8 -2	472 -515 35 37 165 -211 285 313 77 73 357 -410 181 186 234 -215 145 144 163 -133 21* -17 20* -26 241 202 35 6	8 -7 9 -7 0 8 1 -8 8 1 -8 8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		137 165 237 275 72 71 20 31 88 -114 56 -35 252 290 16* -31 118 81 155 -52 34 -46 105 106 65 -49	-333-3333333333 -333-4-556677889	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
8 10 10 12 1 33 55 77		269 22 323 180 317 24 363 279 96 374 29 113	-276 57 -311 180 -309 5 369 -273 -100 411 68 -99	4 4 5 5 6 6 7 7 8 8 9 9 0 1 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32 1 0 79 2 0 79 2 0 70 3 0 74 5 0 75 5 0 74 7 0 74 8 9 700 10 0 48 12 0 740 740 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	56677889011 101	$8\frac{1}{4}$ 69 20+ 18 60 40 18+ 31 41 27 25 -60 41 -22 220 198 145 -133 82 -90 298 332 115 -93	$\begin{array}{c}9 & 2\\9 & -2\\10 & 2\\11 & 2\\11 & -2\\12 & -2\\0 & 3\\1 & 3\\1 & -3\\2 & -3\\2 & -3\end{array}$	19* -7 48 -9 77 -75 204 183 9* -28 102 91 78 58 594 -645 183 179 252 303 17* -16 237 251	K 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- = 4 405 438 350 - 348 76 - 87 109 - 118 145 155 179 - 187 352 - 384 250 250 209 - 10 164 87 764 87	8 -5 9 -5 10 -5 0 6 1 -6 2 -6 3 -6 3 -6 4 -6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9 -3 10 0 1 -4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
9911 02244668 10		02 110 365 25★ 130 64 27★ 226 269 79 56	-76 79 -126 35- -19 -123 36 -33 -192 -287 94 27	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	203 -19 202 2 324 2 179 -11 136 -1 136 -1 185 -1 75 - 37 61 - 21* - 108 1 294 -2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,	145 -124 20* -8 18* -19 215 234 204 191 367 379 305 325 97 -78 247 -255 120 -115 119 -117 16* - 50 15	$\begin{array}{c} 0 & 1 \\ 1 & 1 \\ 1 & -1 \\ 2 & -1 \\ 3 & -1 \\ 4 & -1 \\ 5 & -1 \\ 5 & -1 \\ 6 & 1 \end{array}$	405 -433 20 -15 13* -9 15* -4 80 87 24 19 89 98 56 -48 36 -24 105 78 317 307	5 -6 6 -6 7 -6 8 -6 9 -6 9 -6 0 7 7 1 -7 2 -7 3 7	217 -180 92 -67 154 -137 132 114 88 80 13* 11 212 -291 120 -127 62 33 115 114 58 50 40 40	76677889100112	295 -260 250 242 59 -79 16* 10 98 117 16* 117 32 22 20* -21 55 73 126 148 61 53
1 3 3 5 5 7 9 0 2 2 4	7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7	243 174 65 25* 16* 237 162 77 86 92 224 110	-291 186 -58 -24 -20 286 -179 67 -113 -95 -168 108	6 4 7 4 7 -4 8 -4 9 -4 10 -4 11 -4 12 -4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	9 -0 10 -0 11 -0 1	62 -48 89 75 58 57 7 106 -106 7 161 -144 7 183 172 7 37 -37 7 88 -85 63 77 7 76 -80 7 18 -15 82 71	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	12* -3468 70 54 -44140 -149183 201 167 184122 -114153 -125119 -12051 $-2051*$ $-252*$ -46	6 -1 7 1 7 -1 8 1 8 -1 9 1 9 -1 10 -1 11 1 11 -1 0 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 -7 4 -7 5 -7 6 -7 7 -7 8 -7 0 8 1 -8 2 -8 3 -8	23 ± -18 36 42 18 ± 9 175 172 268 -257 111 -101 11 ± 22 80 -98 65 52 24 4 137 -129 66 65	233445566789	93 99 130 -138 111 -126 139 -106 39 26 39 26 23* -8 14* 3 22* -16 27* -149 91 -94 191 177
468 135 123		100 105 234 157 88 63 < = 1 148 475 87	71 85 239 164 -91 -38 -176 684 68	0 1 -5555 -5	65	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	49*	5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 5 5 6 6 7 7 8 8 9 90 11	61 -64 91 67 224 -225 110 -69 241 268 105 -89 149 135 55 45 21* -15 17 -31 20* 23 17* -17	1 -2 2 2 -2 2 2 2 2 2 2 2 2 2 2 2 3 3 4 4 5 5 6 6 7 -2 2 7 2 2 5 6 6 7 -2 7 2 5 6 6 7 -2 7 7 5 6 6 7 -2 7 7 5 6 6 7 -2 7 7 7 5 6 6 7 -2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	134 -137 289 -373 37 -45 271 -359 148 158 251 292 216 210 220 155 264 -259 103 -88 20* -30 131 134	1 -8 -8 -8 5 -8 1 2 3 5 6 7	$\begin{array}{c} 118 & 115 \\ 95 & 66 \\ 137 & 112 \\ < = 5 \\ 132 & 129 \\ 171 & 197 \\ 17 & -25 \\ 264 & 287 \\ 167 & -128 \\ 207 & 18 \\ 97 & 17 \end{array}$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
34 56 78 910 11 12 0	100000000000000000000000000000000000000	07 174 122 129 78 126 25★ 68 33 108	151 128 -111 60 -128 -24 27 -60 -38 -130		102 - 1 126 - 1 17* - 300 - 3 25* - 50 103 - 1 54	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	297 244 299 29 392 417 49 -64 112 -106 279 -270 80 -80 107 112 50 -49 52 -49	3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 1 1 2 2 3 3 4 4 5	123 115 104 115 119 -107 227 229 129 126 258 277 258 -60 183 -217 245 -235 233 -227 170 140	7 -2 8 -2 9 -2 10 -2 10 -2 11 -2 0 3 1 3	125 121 125 121 43 29 148 167 187 -89 199 -168 87 -59 136 -120 76 62 73 -85 51 10	7 0 9 0 10 0 1 1 1 -1 2 -1 3 -1 3 -1	160 -189 26 -34 171 -144 46 24 286 288 53 41 192 233 126 160 276 -315 260 -314	9 - 0 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

•

```
Table 4 (cont.)
```

h C m 0 22 4 1 1 1 2 2 3 3 4 4 - 1 1 1 2 2 3 3 4 4 - 1 1 1 2 2 3 3 4 4 - 1 1 1 2 2 3 3 4 4 - 1 1 1 2 2 3 3 4 4 - 1 1 1 2 2 3 3 4 4 - 1 1 1 2 2 2 3 3 4 4 - 1 1 1 2 2 2 3 3 4 4 - 1 1 1 2 2 2 2 2 2 2 3 1 1 2 2 2 2 2 2 3 1 1 2 2 2 2	$ \begin{array}{c} F \\ F \\ 0 \\ 0 \\ 0 \\ -7 \\ -7 \\ -7 \\ -7 \\ -7 \\ $	h C F_0 F_c 5 -2 29* 10 6 -2 65 44 0 3 43 44 1 -3 78 -76 2 -3 255 -349 1 -3 76 -265 3 -3 768 -266 -265 -268 -266 -3768 -266 -268 -3768 -266 -268 -3768 -266 -177 5 -3 1122 198 6 -3 135 128 1 4 150 -145 1 4 150 -145 2 -4 23* 11 3 -4 140 51 4 -4 123* -19	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	h t F F C F C F C F C F C F C F C F C F C	h ξ F ₀ F ₆ - 3 16 ² 39 0 4 211 237 1 - 4 38 - 4 2 - 4 63 38 3 - 4 23 ⁴ - 20 3 - 4 23 ⁴ - 20 3 - 4 23 ⁴ - 20 3 - 4 15 ⁴ - 19 4 - 4 23 ⁴ - 38 3 - 4 15 ⁴ - 19 4 - 4 23 ⁴ - 38 3 - 4 15 ⁴ - 19 1 - 5 73 49 2 - 5 21 - 19 2 - 5 21 - 19 2 - 5 21 - 19 2 - 5 5 21 - 10 2 - 5 177 45 - 5 4 - 20 0 - 6 50 57 2 - 6 177 2 - 6 175 ⁴ - 20 - 5 20 -	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	h C Fo Fc 0 1 3 53 -62 2 -3 58 -123 1 -3 53 -62 2 -3 58 -64 3 -3 58 -64 3 -3 166 -14 3 -3 106 -97 4 -3 106 -97 4 -3 106 -97 5 -3 141 108 5 -3 75 55 6 -3 75 55 7 -48 0 4 4 197 -970 2 3 4 92 109 3 4 -4 197 -188 3 -5 61 46 4 -51 15 5 -61 26 4 -61 3 -5 61 26 4 -63 -3 -5 61 26 -3 -5 61 26 -4 -5 15 -5 -5 61 26 -5 -5 61 2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
1 -2 2	7 -3 20	4 -4 60 61	4 0 112 134	1 -3 231 245	1 -6 75 58	3 2 161 170	4 -5 126 163	2 -3 16+ 32
2 -2 1	19 -128	6 -4 23* -19	6 0 61 -54	2 -3 44 -38	3 -6 15* -11	4 2 25 -35	k = 9	3 - 3 86 - 87
3 2 14	43 178	0 5 52 -17	0 1 40 -51	3 3 23* 4	5 -6 78 -56	4 -2 28 -10	1 0 29 50	
4 2 6	5 54	1 5 71 -24	1 1 164 205	4 3 74 -57	k = 8	5 -2 174 -139	2 0 115 111	
4 -2 5 2 2	26# 31 51 - 190	1 -5 23* -2 2 5 201 290	1 -1 127 141 2 1 40 -10	4 -3 56 -75 5 3 184 130	0 0 75 -100	6 2 28 40 6 -2 17 * -45	3 0 73 60 4 0 68 57	

deviation being 0.024 Å for the C₃ atom. This latter atom is the only one with two attached hydrogen atoms and does not seem to be involved in any resonating structure in the molecule.

Fig. 3. Projection of the structure of rhodanine, viewed along the b-axis. The b-axis is up.

A projection of the structure of rhodanine is shown in Fig. 3, viewed along the *b*-axis. Bond distances and angles are shown in Table 5. We estimate the error in the coordinates of atoms as being less than 0.01 Å and, therefore, the error in bond distances as being between 0.01 and 0.02 Å. The error in bond angles is estimated as being less than 1°. These estimates are based upon the changes in bond distances observed in the final stage of refinement. The maximum change in bond distance was actually 0.005 Å for the C_2-C_3 distance.

The only bond which does not show some evidence of involvement in a resonating system is the C_3-S_2

Table 5. Bond distances and angles

Bond d	listances	Bond a	ngles
C1-81	1·64 Å	$S_1 - C_1 - S_2$	124·1°
$C_{1} - S_{2}$	1.74	$S_1 - C_1 - N_1$	$124 \cdot 2$
$C_{3} - S_{2}$	1.82	$N_{1} - C_{1} - S_{2}$	111.8
$C_{2}^{-}C_{3}^{-}$	1.51	C1-N1-C2	116.8
$C_{2} - O_{1}$	1.23	$N_1 - C_2 - C_3$	112.3
$N_1 - C_2$	1.38	$N_1 - C_2 - O_1$	123.3
$C_1 - N_1$	1.37	$O_1 - C_2 - C_3$	124.3
		$C_2 - C_3 - S_2$	106.3
		C ₂ -S ₂ -C ₁	92.7

bond whose length, 1.82 Å, agrees very well with the expected single bond distance of 1.81 Å (Pauling, 1945), and with measured carbon-sulfur bond distances found in compounds where no resonance is to be expected (1.81 Å in 1,4-dithian, Marsh, 1955; 1.82 Å in dimethyl sulfide, Brockway & Jenkins, 1936; 1.87 Å in N,N'-diglycyl-1-cystine dihydrate, Yakel & Hughes, 1954).

Using Pauling's (1945) tables of bond radii and his table showing the relationship between bond distance and double-bond character, the following approximate double bond percentages can be derived from the experimentally observed bond distances:

$C_2 - O_1$	80%	C_1-S_1	60%
С2С3		$C_1 - S_2$	25%
$C_2 - N_1$	20%	C_1-N_1	25%

Thus, a considerable positive charge would be expected to reside on the nitrogen atom making the attached hydrogen atom acidic in nature. Likewise, a considerable negative change would reside on the S_1 atom while a smaller positive charge would be found on S_2 and a small negative charge on O_2 . These findings would tend to indicate that the silver rhodanine complex (Feigl, 1926, 1949) would have silver atoms bonded to the N_1 and S_1 atoms. It is not possible to predict the structure of silver rhodanine complex, although a bimolecular complex with two linear N-Ag- S_1 bonds would seem to be the most probable. The internal angle $C_1-S_2-C_3$ is 92° 42′ which is just slightly larger than the expected angle of 90° for a single bond but the deviation is in the correct direction for some double-bond character in the C_1-S_2 bond. Likewise the internal angle $C_1-N_1-C_2$ is found to be 116° 45′ which again tends to show the above-mentioned resonance effects.

The molecule in the plane $(2\overline{1}1)$ forms a pair with the related molecule by a center of symmetry at $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$ in the same plane. The two molecules are bonded together with two N-H · · · O hydrogen bonds of length 2.85 Å (Fig. 3). The other two molecules lie in the symmetry related plane (211). The planes (211) and (211) include an angle of 51°. The hydrogen bond angles are $\angle C_2$ -N₁-O₁=113° 26′ and $\angle C_2$ -O₁-N₁= 122° 5′.

The crosswise packing of the centrosymmetrical related 'double' molecules is similar to that found in many flat organic molecules. Chains of atoms O'_1 -(3.6 Å)- O_1 -(3.3 Å)- S_2 -(3.0 Å)- S_1 -(3.5 Å)- S'_1 -(3.0 Å)- S'_2 etc. extend along [102]. The similarity of distances in the chain causes all the S-O peaks in the Patterson to fall on top of the S-S peaks.

 Table 6. Intermolecular distances between reference

 molecule and molecule related by

Screw axis		Screw	axis	Center of symmetry $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$			
(1, 0, 3)		(1 , 0,	‡)				
$\begin{array}{c} {\rm S_2-O_1'}\\ {\rm C_3-O_1'}\\ {\rm C_3-C_3'}\\ {\rm C_3-S_2'}\\ {\rm C_2-S_2'} \end{array}$	3.27 3.01 4.19 3.76 3.91	$\begin{array}{c} C_2 - S_1{}'\\ N_1 - S_1{}'\\ N_1 - S_2{}'\\ S_1 - O_1{}'\\ S_1 - S_2{}'\end{array}$	3·45 3·77 3·66 3·70 4·15	$\begin{array}{c} {\rm C_2-N_1}'\\ {\rm O_1-C_2}'\\ {\rm O_1-C_1}'\\ {\rm O_1-S_1}'\\ {\rm C_2-S_1}'\\ {\rm N_1-N_1}'\\ {\rm O_1-O_1}'\end{array}$	3.63 3.66 3.87 4.18 3.80 3.90 3.59		

The sulfur atoms of two molecules approach to within 3.47 Å of each other. This verifies the finding of Yakel & Hughes (1954), Marsh (1955) and Donohue (1950) that the van der Waals radius of sulfur is less than the value 1.85 Å given by Pauling (1945) and is closer to 1.72-1.73 Å. Other intermolecular distances are given in Table 6. The C₃-O₁ distance is remarkably short.

We do not feel that the temperature factor parameters are highly accurate due to the appearance of the difference Fourier, Fig. 1. The two atoms outside the ring, S_1 and O_1 , have the highest temperature factors. The directions of the vibration ellipsoids and also the fact that the ring atoms have relatively lower temperature factors, probably indicate that there exists a torsional vibration around the center of gravity of the five-membered ring.

The difference Fourier may also indicate that the electron distribution around the sulfur atoms is not spherically symmetrical or that the atomic scattering factors are not absolutely correct.

D. van der Helm wants to express his gratitude to Prof. C. H. MacGillavry for the helpful discussions on the results of the present structure analysis.

It is a pleasure to acknowledge the financial support of the U.S. Atomic Energy Commission under contract AT(11-1)-120 for the bulk of the period and of the U.S. Army, Office of Ordinance Research under contract DA-008-ord-706 for the early period of the work. Computations were carried out in the Research Computing Center of Indiana University to which we also are indebted. Thanks are also due to Dr Sankar Kumar Datta for his generous assistance in parts of the work.

References

- BERGHUIS, J., HAANAPPEL, IJ. M., POTTERS, M., LOOP-STRA, B. O., MACGILLAVRY, C. H. & VEENENDAAL, A. L. (1955). Acta Crys. 8, 478.
- BROCKWAY, L. O. & JENKINS, H. O. (1936). J. Amer. Chem. Soc. 58, 2036.
- COCHRAN, W. (1951). Acta Cryst. 4, 408.
- DAVIES, D. R. & BLUM, J. J. (1955). Acta Cryst. 8, 129.
- DONOHUE, G. (1950). J. Amer. Chem. Soc. 72, 2701.
- DONOHUE, G. & BRYDEN, J. H. (1955). Acta Cryst. 8, 314.
- FEIGL, F. & POLLAK, J. (1926). Mikrochem. 4, 185.
- FEIGL, F. (1949). Specific and Sensitive Reactions, p. 328. New York: Academic Press, Inc.
- LEUNG, Y. C., MARSH, R. E. & SCHOMAKER, V. (1957). Acta Cryst. 10, 650.
- LIPSON, H. & COCHRAN, W. (1953). The Determination of Crystal Structures, p. 171. London: Bell.
- MARSH, R. E. (1955). Acta Cryst. 8, 91.
- MERRITT, Jr., L. L. & LESSOR, Jr., A. E. (1955). Ac'a Cryst. 8, 848.
- PATTERSON, A. L. (1935). Z. Kristallogr. 90, 517.
- PAULING, L. (1945). The Nature of the Chemical Bond. Ithaca: Cornell University Press.
- ROLLETT, J. S. & DAVIES, D. R. (1955). Acta Cryst. 8, 125.
- SHOEMAKER, D. P., BARIEAU, R. E., DONOHUE, G. & LU, C.-S. (1953). Acta Cryst. 6, 241.
- TOMIIE, Y. & STAM, C. H. (1958). Acta Cryst. 11, 126.
- YAKEL, Jr., H. L. & HUCHES, E. W. (1954). Acta Cryst. 7, 291.